

PRODUCT CARD

ABS

high impact resistance

good mechanical strenght

permissible continuous working temperature over 75°C

high gloss

good electrical insulating properties

high chemical resistance

high stifness

high hardness

acetone soluble

1. GENERAL INFORMATION ABOUT THE PRODUCT

ABS (acrylonitrile butadiene styrene copolymer) is second, after PLA, most popular material. It used when higher impact strength, hardness and better scratch resistance than Polylactide is needed. ABS has good isolation properties and much more temperature resistance than PLA. Printing with ABS is a little more difficult because of more shrinkage and less universality of the substrate.

Main ABS features:

- good mechanical strength, stiffness and hardness,
- high impact resistance,
- good thermal stability,
- permissible continuous operation temperature over 75°C,
- average chemical resistance, in particular satisfactory resistance to alkalis, diluted acids, aliphatic hydrocarbons, oils and fats,
- good electrical insulation properties,
- high gloss.

2. TECHNICAL PARAMETERS

CHARACTERISTICS	TEST METHOD	TEST CONDITIONS	IU	VALUE	
	ISO				
PHYSICAL					
Density	ASTM D792	-	g/cm ³	1.04	
Water absorption to saturation	ASTM D570	23°C/sat.	%	0.3	
Processing shrinkage II/ \perp		-	%	0.3~0.5	
MECHANICAL					
Yield strength	527-1,-2	50mm/min	MPa	41	
Elongation at break	527-1,-2	50mm/min	%	50	
Bending stress	178	2mm/min	MPa	58	
Elastic modulus at tension	178	2mm/min	MPa	1750	
Notched Charpy impact strength	179-1	1eA	kJ/m²	22	
Notched Charpy Impact strength (-30°C)	179-1	1eA	kJ/m²	10	
THERMAL					
Vicat softening point	306	50N	°C	96	
Deflection temperature under load	75-1,-2	1,8 MPa	°C	71	
Coefficient of linear thermal expansion II/ \perp	11359-1/-2	23°C - 85°C	E-6/°C	85	
COMBUSTIBILITY					
Flammability level test	UL94	3,2 mm	Class	НВ	
Flammability index of incandescent material wire(GWFI)	IEC-60695-2-12	2 mm	°C	650	
ELECTRICAL					
Surface resistivity	IEC 60093	-	Ω	10 ¹³	
Volume resistivity	IEC 60093	-	Ω xcm	10 ¹²	
Dielectric constant	IEC 60250	100kHz	-	3.9	

Tests have been done in 23°C, if it's not marked differently.

3. RECOMMENDATION OF PRINTING

There might be some problems to achieve proper adhesion on glass bed.

Using perforated bed, PVA glue, specialized product (Dimafix), kapton coating or other different way to obtain adhesion is recommended.

Recommended parameters of printing:

Hotend temperature	240 - 265 °C
Bed temperature	90 – 105 °C
Print speed	< 200 mm/s

Examples of problems and their solutions:

Problem	Possible cause	Proposed solution
Weak layers adhesion	Extruder temperature is too low Too high speed of printing	Raising the extruder temperature Raising the extruder temperature / reducing the print speed
Uneven feeding – losing steps of the feeder / filament sliding on the drive gear	Extruder temperature is too low Weak feader pressure	Raising the extruder temperature Raising the pressure
Print is peeling of the bed	Too low temperature of bed Improperly prepared surface Cooling	1) Raising the bed temperature 2) Degreasing the bed / using another source of adhesion / using perforated bed 3) Giving up the cooling on first stage is recommended
Edge curling	1) Processing shrinkage	1) Compensation with amount of served filament / selection cooling parameters / changing the chamber temperature

4. SAFETY NOTES

Exhaust fan is recommended.

Air filters in printer is recommended.

ABS needs to be used only in well ventilated conditions.

Inhaling fumes generated during the printing must be avoided.

Generating fumes during the printing depends mainly on printing temperature. In case of visibly raising emission level, the printing needs to end. Check the hotend temperature and efficiency of the control system before using it next time.

In proper using conditions, the product doesn't endanger health.

It's forbidden to set fire or exceed decomposition temperature!

Decomposition of ABS is typically over 300 °C. Main ingredient of decomposition is styrene.

Detailed safety information available in SDS.